Mapping physiological G protein-coupled receptor signaling pathways reveals a role for receptor phosphorylation in airway contraction.

نویسندگان

  • Sophie J Bradley
  • Coen H Wiegman
  • Max Maza Iglesias
  • Kok Choi Kong
  • Adrian J Butcher
  • Bianca Plouffe
  • Eugénie Goupil
  • Julie-Myrtille Bourgognon
  • Timothy Macedo-Hatch
  • Christian LeGouill
  • Kirsty Russell
  • Stéphane A Laporte
  • Gabriele M König
  • Evi Kostenis
  • Michel Bouvier
  • Kian Fan Chung
  • Yassine Amrani
  • Andrew B Tobin
چکیده

G protein-coupled receptors (GPCRs) are known to initiate a plethora of signaling pathways in vitro. However, it is unclear which of these pathways are engaged to mediate physiological responses. Here, we examine the distinct roles of Gq/11-dependent signaling and receptor phosphorylation-dependent signaling in bronchial airway contraction and lung function regulated through the M3-muscarinic acetylcholine receptor (M3-mAChR). By using a genetically engineered mouse expressing a G protein-biased M3-mAChR mutant, we reveal the first evidence, to our knowledge, of a role for M3-mAChR phosphorylation in bronchial smooth muscle contraction in health and in a disease state with relevance to human asthma. Furthermore, this mouse model can be used to distinguish the physiological responses that are regulated by M3-mAChR phosphorylation (which include control of lung function) from those responses that are downstream of G protein signaling. In this way, we present an approach by which to predict the physiological/therapeutic outcome of M3-mAChR-biased ligands with important implications for drug discovery.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

G-protein Coupled Receptor Dimerization

A growing body of evidence suggests that GPCRs exist and function as dimers or higher oligomers. The evidence for GPCR dimerization comes from biochemical, biophysical and functional studies. In addition, researchers have shown the occurrence of heterodimerization between different members of the GPCR family. Two receptors can interact with each other to make a dimer through their extracellular...

متن کامل

The Implication of Androgens in the Presence of Protein Kinase C to Repair Alzheimer’s Disease-Induced Cognitive Dysfunction

Aging, as a major risk factor of memory deficiency, affects neural signaling pathways in hippocampus. In particular, age-dependent androgens deficiency causes cognitive impairments. Several enzymes like protein kinase C (PKC) are involved in memory deficiency. Indeed, PKC regulatory process mediates α-secretase activation to cleave APP in β-amyloid cascade and tau proteins phosphorylation mecha...

متن کامل

G Protein-Coupled Receptor Kinase 2 (GRK2) and 5 (GRK5) Exhibit Selective Phosphorylation of the Neurotensin Receptor in Vitro

G protein-coupled receptor kinases (GRKs) play an important role in the desensitization of G protein-mediated signaling of G protein-coupled receptors (GPCRs). The level of interest in mapping their phosphorylation sites has increased because recent studies suggest that the differential pattern of receptor phosphorylation has distinct biological consequences. In vitro phosphorylation experiment...

متن کامل

Altered airway and cardiac responses in mice lacking G protein-coupled receptor kinase 3.

Contraction and relaxation of airway smooth muscles is mediated, in part, by G protein-coupled receptors (GPCRs) and dysfunction of these receptors has been implicated in asthma. Phosphorylation of GPCRs, by G protein-coupled receptor kinase (GRK), is an important mechanism involved in the dampening of GPCR signaling. To determine whether this mechanism might play a role in airway smooth muscle...

متن کامل

VGB3 Induces Apoptosis by Inhibiting Phosphorylation of NF-κB p65 at Serine 536 in the Human Umbilical Vein Endothelial Cells

Background and objectives: Nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) inhibition results in an increase in apoptosis. It has been demonstrated that NF-κB subunit p65 phosphorylation at the IκB kinase phosphorylation site serine 536 (Ser536) is essential for the NF-κB nuclear translocation and activation. Therefore, NF-κB can be downregulated by suppressing its phosph...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 113 16  شماره 

صفحات  -

تاریخ انتشار 2016